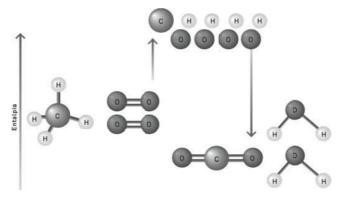
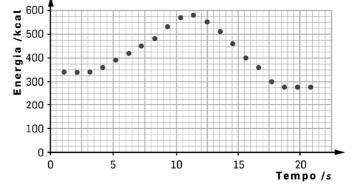
Ficha 6 – Transformações químicas

Domínio 2: Propriedades e transformações da matéria


NOME	Turma	Número

Consulte os dados da tabela seguinte, a Tabela Periódica, tabelas de constantes e formulários sempre que necessário e salvo indicação em contrário.

As figuras dos exercícios 1, 9 e 8 contêm hiperligação à fonte.


Ligação	Energia média da ligação / kJ mol ⁻¹
0 - 0	142
H-H	436
0 -H	463
0 = 0	496
$N \equiv N$	941

1. No diagrama de níveis de entalpia da figura está representada a combustão do metano.

- **a)** Interprete a combustão do metano, do ponto de vista energético, como resultado de um processo que envolve ligações químicas.
- **b)** Compare a entalpia dos produtos da reação com a dos reagentes e conclua se a variação de entalpia é positiva ou negativa.
- **2.** Uma reação química, que ocorreu num sistema isolado, provocou uma diminuição de temperatura do sistema. Tal significa que a reação é:
 - (A) endotérmica, e se o sistema não fosse isolado ocorreria transferência de energia do exterior para o sistema.
 - **(B)** endotérmica, e se o sistema não fosse isolado ocorreria transferência de energia do sistema para o exterior.
 - (C) exotérmica, e se o sistema não fosse isolado ocorreria transferência de energia do exterior para o sistema.
 - **(D)** exotérmica, e se o sistema não fosse isolado ocorreria transferência de energia do sistema para o exterior.

3. O gráfico da figura traduz a evolução da energia de um sistema reacional, em que os reagentes A e B, (estado inicial), originam o produto da reação C, (estado final), segundo A + B \rightarrow C, durante 20 s.

- a) Conclua, justificando com base na comparação das energias dos reagentes e do produto da reação, se esta reação é endoenergética ou exoenergética.
- b) Determine a taxa média de variação temporal da energia do sistema reacional até aos 20 segundos.
- c) Indique o sinal da variação de temperatura do sistema reacional caso a reação tivesse ocorrido num sistema isolado.
- d) Compare a soma das energias de ligação nos reagentes A e B com a soma das energias de ligação no produto C.
- 4. Na síntese do amoníaco, traduzida pela equação N_2 (g) + 3 H_2 (g) + 3 H_2 (g) \rightarrow 2 NH_3 (g), é envolvida uma energia X que resulta das energias das ligações NN, HH e NH, respetivamente E_{NN} , E_{HH} e E_{NH} .
 - a) A formação da ligação NH é um processo
 - (A) endoenergético e a rutura da ligação HH também.
 - (B) endoenergético e a rutura da ligação NN é um processo exoenergético.
 - (C) exoenergético e a rutura da ligação HH também.
 - (D) exoenergético e a rutura da ligação NN é um processo endoenergético.
 - **b)** Pode saber-se o valor da energia X recorrendo à expressão:

(A)
$$E_{NN} + 3E_{HH} - 2E_{HN}$$
 (B) $E_{NN} + 3E_{HH} - 6E_{HN}$

(B)
$$F_{\text{NINI}} + 3F_{\text{LILI}} - 6F_{\text{LIN}}$$

(C)
$$2E_{NN} + 6E_{HH} - 2E_{NH}$$

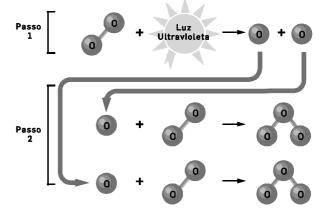
(C)
$$2E_{NN} + 6E_{HH} - 2E_{NH}$$
 (D) $2E_{NN} + 6E_{HH} - 6E_{NH}$

- c) Sabendo que o resultado obtido pela expressão identificada em b) é negativo pode concluir-se que a síntese do amoníaco é um processo:
 - (A) endotérmico, ocorrendo com absorção de energia.
 - (B) endotérmico, ocorrendo com libertação de energia.
 - (C) exotérmico, ocorrendo com absorção de energia.
 - (D) exotérmico, ocorrendo com libertação de energia.
- d) Considerando que a síntese do amoníaco ocorre a pressão constante, como designa o valor obtido pela expressão identificada em **b)**?
- 5. As equações (1) e (2) representam a formação de água a partir das substâncias elementares, H_2 e O_2 , a 25 °C.

(1)
$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(I)$$
 $\Delta H = -286 \text{ kJ mol}^{-1}$

(2)
$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(g)$$
 $\Delta H = -242 \text{ kJ mol}^{-1}$

- a) A formação de uma mole de água líquida dá-se com:
 - (A) absorção de 44 kJ de energia a mais relativamente à formação da mesma quantidade de água gasosa.
 - **(B)** absorção de 44 kJ de energia a menos relativamente à formação da mesma quantidade de água gasosa.
 - (C) libertação de 44 kJ de energia a mais relativamente à formação da mesma quantidade de água gasosa.
 - **(D)** libertação de 44 kJ de energia a menos relativamente à formação da mesma quantidade de água gasosa.
- b) Conclua, justificando a partir da determinação da variação de entalpia (usando os valores médios das energias de ligação), sobre o caráter energético da transformação inversa da representada por (2).
- 6. A síntese do óxido nítrico é traduzida pela seguinte equação:


$$N_2(g) + O_2(g) \rightarrow 2 \text{ NO } (g) \quad \Delta H = +181 \text{ kJ mol}^{-1}$$

- a) Desenhe um diagrama de níveis de entalpia para a síntese do NO.
- b) Determine o valor médio da energia da ligação NO.
- c) Indique o valor da variação de entalpia da reação de decomposição do óxido nítrico, correspondente à transformação inversa da representada pela equação.
- **7.** A tabela abaixo contém informações sobre ionização e dissociação dos dois gases mais abundantes na atmosfera terrestre, e sobre o ozono que é o gás mais importante na estratosfera.

Substância	Energia de 1.ª ionização / J	Energia de dissociação (atomização) / J
N ₂	2.5×10^{-18}	1,6 × 10 ⁻¹⁸
O ₂	1,9 × 10 ⁻¹⁸	8,2 × 10 ⁻¹⁹
O ₃	-	6,0 × 10 ⁻¹⁹

- a) Represente, através de uma equação, a dissociação do oxigénio, O2.
- **b)** O valor da energia envolvida na transformação representada por $N_2(g) \rightarrow N_2^+(g) + e^- \acute{e}$:
 - **(A)** $1.6 \times 10^{-18} \, \text{J}$
 - **(B)** $3.2 \times 10^{-18} \, \text{J}$
 - (C) $2.5 \times 10^{-18} \,\mathrm{J}$
 - **(D)** $5.0 \times 10^{-18} \, \text{J}$
- c) Como se designa a transformação representada em b) pelo facto de ocorrer por ação da luz (na atmosfera terrestre)?
- **d**) Interprete as reações fotoquímicas que envolvem as moléculas N_2 , O_2 ou O_3 na atmosfera terrestre, relacionando-as com a energia da radiação e com a estabilidade dessas moléculas.

8. Na figura ao lado pode ver-se uma representação do processo de produção do ozono estratosférico.

- a) A equação que pode traduzir globalmente o processo de formação do ozono estratosférico representado é:
 - **(A)** $O_2 \rightarrow 2 O$
 - **(B)** $O + O_2 \rightarrow O_3$
 - (C) $0 + 2 O_2 \rightarrow 2 O_3$
 - **(D)** $3 O_2 \rightarrow 2 O_3$
- **b)** Interprete, com base nas fotodissociações do oxigénio e do ozono estratosféricos, que a estratosfera atue como um filtro de radiações ultravioletas UV–B e UV–C. Comece por escrever as equações correspondentes.
- c) Discuta a validade da seguinte afirmação: Os átomos de oxigénio são radicais livres.
- 9. Em zonas de grande tráfego rodoviário, óxidos de carbono e de nitrogénio, em determinadas condições de temperatura e na presença da luz, podem reagir com oxigénio e conduzir à formação de ozono o qual provoca ou agrava problemas respiratórios das populações.
 Na atmosfera terrestre pode encontrar-se ozono na:
 - (A) estratosfera, onde atua como poluente.
 - (B) estratosfera, onde atua como poluente e como protetor de radiação ultravioleta.
 - (C) troposfera, onde atua como poluente.
 - (D) troposfera, onde atua como poluente e como protetor de radiação ultravioleta.
- **10.** Medições da concentração de CFC, como CFC ℓ_3 e CF₂C ℓ_2 , e de CH₃CC ℓ_3 na troposfera, revelaram que a taxa de diminuição temporal da concentração dos CFC era inferior à taxa de diminuição temporal da concentração do CH₃CC ℓ_3 .
 - a) De acordo com o texto, CFC são substâncias formadas por cloro, flúor,
 - (A) carbono e hidrogénio, mais estáveis na troposfera que CH₃CC₂.
 - (B) carbono e hidrogénio, mais reativas na troposfera que CH₃CCℓ₃.
 - (C) e carbono, mais estáveis na troposfera que CH₃CCℓ₃.
 - **(D)** e carbono, mais reativas na troposfera que $CH_3CC\ell_3$.
 - b) Explique a formação de radicais livres traduzida pela equação seguinte, identificando a camada da atmosfera onde tem maior probabilidade de ocorrer

c) Com base nas equações (1) e (2) explique o efeito do uso de CFC ℓ_3 na concentração de ozono estratosférico.

(1)
$$C\ell + O_3 \rightarrow O_2 + C\ell O$$

(2)
$$C\ell O + O_3 \rightarrow 2 O_2 + C\ell$$